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Abstract  
Carbon dioxide removal is likely to be unavoidable to achieve ambitious climate goals. 
Deploying Direct Air Capture (DAC) might be necessary, in the long-term, to avoid conflicts 
for land-surface, biomass, and water usage 1–6. Currently, only a handful of commercial-scale 
DAC plants exist, with costs ranging from at least 600 to 1000 USD/tCO2 removed 7–9. To 
reduce theses costs through technological learning and economies of scale10, governments 
will need to adopt policies encouraging the development and deployment of DAC plants. 
Using the multi-level perspective on technological transition as theoretical framework11,12, we 
investigate two possible development pathways for DAC: its explicit deployment for carbon 
removal (the DAC Direct pathway), or its deployment for CO2 utilization e.g., for synthetic 
fuels, chemicals, and plastics (the DAC Spillover pathway). In particular, we assess the 
differences between these pathways in terms of what they require to deploy the first gigaton 
of air-captured CO2. We thereby identify barriers and opportunities for the creation of new 
socio-technical regimes along three dimensions: (1) technology, (2) infrastructure, and (3) 
immaterial factors and institutions.  

 



Our results concerning the different needs along the two development pathways are 
summarized in Figure 1. We find that the use of DAC-based CO2 fuels and chemicals in the 
Spillover pathway requires more resources, and larger infrastructural investments than simply 
storing the captured CO2 underground. However, the institutional framework needed to 
govern the production of CO2-based fuels and chemicals largely overlaps with the existing 
set-up, highlighting the lower societal barriers to their adoption. The Direct pathway, 
conversely, relies on less energy and capital, yet it faces the challenge of having to set up a 
whole new industry with new markets, user practices, and socio-cultural meanings.  
 
We conclude that initially supporting spillover-technologies i.e., CO2-based fuels and 
chemicals, could face less short-term barriers than directly scaling up DAC for CO2 storage 
(DACCS) while having co-benefits for the decarbonization of different sectors of the 
economy. Yet, due to this pathway’s higher costs and energy use, this is only true as long as 
volumes of CO2-based fuels and chemicals are small. On the longer-term, however, as the 
institutional framework enabling carbon removal starts materializing, DACCS-supporting 
policies could become more politically feasible. Yet, since the advantages of each pathway 
are counterbalanced by trade-offs that might affect the local deployment differently, the 
suitability of each pathway is heavily context-dependent. 
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