

Biohybrid Fluidized CO₂ Electrolysis for Enhanced Formate Production and In-situ Bioconversion to Valuable Products

Basem Zakaria, Eric Sundstrom, Sara Tejedor-Sanz

Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, 94608, USA

Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

Abstract:

Conventional CO₂ electrolysis methods typically rely on flat/static gas diffusion electrodes for CO₂-to-formate conversion. However, these approaches often encounter limitations such as insufficient mass transfer, potential electrocatalyst loss, and a constrained electrocatalytic surface area, resulting in reduced CO₂ conversion efficiency to formate. Additionally, formate can serve as a sole substrate for various microbial strains. Here, we developed a biohybrid fluidized CO₂ electrolysis system that integrates CO₂-to-formate conversion with in-situ bioconversion using Cupriavidus necator. Initially, we evaluated different fluidized electrocatalytic particles (Sn, In, and Bi) for their performance in CO₂ reduction to formate. The fluidized catalysts significantly enhanced formate production rates, achieving 0.24 mmol h⁻¹ cm⁻² compared to 0.13 mmol h⁻¹ cm⁻ ² with flat electrodes, with superior performance of Sn particles. Moreover, the fluidized reactor achieved a coulombic efficiency (CE) of up to 92%, while flat electrode reached 70%. Finally, we successfully integrated the CO₂ electrolysis system with in-situ bioconversion using C. necator to utilize formate into valuable bioproducts. Our results showed that the fluidized design effectively overcomes the limitations of conventional CO₂ electrolysis, demonstrating enhanced efficiency and scalability for industrial applications. Furthermore, the biohybrid integration allows for the direct utilization of formate as a microbial substrate, streamlining the process by eliminating intermediate steps and significantly improving the system's sustainability.

Keywords: CO2 electrolysis, formate, biohybrid, fluidized electrocatalyst, Cupriavidus necator